Designing for Understandability:
the Raft Consensus Algorithm

Diego Ongaro
John Ousterhout

Stanford University

€ PLATFORMLARB

Algorithms Should Be Designed For ...

Correctness?
Efficiency?

Cconciseness?

Understandability!

August 29, 2016 The Raft Consensus Algorithm Slide 2

Overview

e Consensus:
= Allows collection of machines to work as coherent group
= Continuous service, even if some machines fail

e Paxos has dominated discussion for 25 years
= Hard to understand
= Not complete enough for real implementations

e New consensus algorithm: Raft
= Primary design goal: understandability (intuition, ease of explanation)
= Complete foundation for implementation
= Different problem decomposition

e Results:

= User study shows Raft more understandable than Paxos
= Widespread adoption

August 29, 2016 The Raft Consensus Algorithm Slide 3

State Machine

e Responds to external stimuli

e Manages internal state

_ request
e Examples: many storage ~ A
systems, services of w__~—
= Memcached Clients result
State
= RAMCloud Machine

= HDFS name node

August 29, 2016 The Raft Consensus Algorithm Slide 4

Replicated State Machine

CEEEEEEEE

(Consensus
Module achine
Log

| X1 | y<—3 | x<—4

Z—X l

/E:onsensus \
Module Machine

)

ate
Madhine

Consgnsus
MoWule

)

| X1 | y<—3 | x<—4

| X1 | y<—3 | x<—4

~

Clients

Servers

e Replicated log ensures state machines execute same commands in same order

e Consensus module ensures proper log replication

e System makes progress as long as any majority of servers are up

e Failure model: delayed/lost messages, fail-stop (not Byzantine)

August 29, 2016

The Raft Consensus Algorithm

Slide 5

Paxos (Single Decree)

Proposers Acceptors
Choose unique proposal # Propose (proposal #)

—

—

—

proposal # > any previous?

highest proposal # accepted,

i lue
o corresponding Vva
Majority? Select value for

highest proposal # returned,;
if none, choose own value

accept (proposal #, value)

—
—

proposal # >= any previous?

. accepted
Majority? Value chosen

August 29, 2016 The Raft Consensus Algorithm Slide 6

Paxos Problems

e Impenetrable: hard to develop intuitions
“The dirty little secret of the NSDI

= Why does it work? 7 .
_ community is that at most five
= What is the purpose of each phase? people really, truly understand every

part of Paxos :-)”

e Incomplete — NSDI reviewer

= Only agrees on single value
= Doesn’t address liveness

“There are significant gaps between

= Choosing proposal values? the description of the Paxos
= Cluster membership management? algorithm and the needs of a real-
world system ... the final system will
e Inefficient be based on an unproven protocol”
— Chubby authors

= Two rounds of messages to choose one value

e No agreement on the details

Not a good foundation for practical implementations

August 29, 2016 The Raft Consensus Algorithm Slide 7

Raft Challenge

e Is there a different consensus algorithm that’s easier to
understand?

e Make design decisions based on understandability:
= Which approach is easier to explain?

e Techniques:
= Problem decomposition

= Minimize state space
e Handle multiple problems with a single mechanism
e Eliminate special cases
e Maximize coherence
e Minimize nondeterminism

August 29, 2016 The Raft Consensus Algorithm Slide 8

Raft Decomposition

1. Leader election:
= Select one server to act as leader
= Detect crashes, choose new leader

2. Log replication (normal operation)
= Leader accepts commands from clients, appends to its log
= Leader replicates its log to other servers (overwrites inconsistencies)

3. Safety
= Keep logs consistent
= Only servers with up-to-date logs can become leader

August 29, 2016 The Raft Consensus Algorithm Slide 9

Server States and RPCs

Stfrt
FO”OWer PaSSIVe (bUt eXpeCtS
| regular heartbeats)
discover
higher o
heartbeat
term
ate | o Issues RequestVote RPCs
Candidate to get elected as leader
win
election

Issues AppendEntries RPCs:
Leader ® Repllcate ItS Iog
* Heartbeats to maintain leadership

August 29, 2016 The Raft Consensus Algorithm Slide 10

Terms

Term1l Term 2 Term 3 Term 4 Term 5
cesccescccccenae [
N Y |
Elections Normal Split
Operation Vote

e At most 1 leader per term
e Some terms have no leader (failed election)

e Each server maintains current term value (no global view)

= Exchanged in every RPC
= Peer has later term? Update term, revert to follower
= |Incoming RPC has obsolete term? Reply with error

Terms identify obsolete information

August 29, 2016 The Raft Consensus Algorithm Slide 11

Leader Election

Become candidate

l

currentTerm++, | timeout
vote for self

l

Send RequestVote RPCs
to other servers

votes from majority l l RPC from leader

Become leader, Become
send heartbeats follower

August 29, 2016 The Raft Consensus Algorithm Slide 12

Election Correctness

e Safety: allow at most one winner per term

= Each server gives only one vote per term (persist on disk)
= Majority required to win election

y (\ ¢ N
Seiargatjslri; i\[] []ii‘[] [] []j c;/r?(;ieoclia];grA

Servers

e Liveness: some candidate must eventually win
= Choose election timeouts randomly in [T, 2T] (e.g. 150-300 ms)

= One server usually times out and wins election before others time out
= Works well if T >> broadcast time

e Randomized approach simpler than ranking

August 29, 2016 The Raft Consensus Algorithm Slide 13

Normal Operation

e Client sends command to leader
e Leader appends command to its log
e Leader sends AppendEntries RPCs to all followers

e Once new entry committed:
= |Leader executes command in its state machine, returns result to client
= |eader notifies followers of committed entries in subsequent AppendEntries RPCs
= Followers execute committed commands in their state machines

e Crashed/slow followers?
= Leader retries AppendEntries RPCs until they succeed

e Optimal performance in common case:
= One successful RPC to any majority of servers

August 29, 2016 The Raft Consensus Algorithm Slide 14

Log Structure

terml 1 2 3 4 5 6 7 8 9 10 log index

1 1 1 2 2 3 3 3 3 3
f x—3|q<8|j—2 |x—q|z5|y<1]|y<3| g—j | x<4]|z—6
command

1 1 1 2 2 3 3
x—3|q<8]|j«2 | x—q|z5|y<1]|y<3

leader for term 3

1 1 1 2 2 3 3 3 3 3
x—3|q8]|j—2 |x—q|z5|y<1]|y<3| g—j | x«4]|z—6

- followers
1] 1
x—3|q<8
11122123]3]3
x—3|q8|j2 | x—q|z5|y<1|y<3| g«
| >| committed entries

e Must survive crashes (store on disk)

e Entry committed if safe to execute in state machines
= Replicated on majority of servers by leader of its term

August 29, 2016 The Raft Consensus Algorithm Slide 15

Log Inconsistencies

Crashes can result in log inconsistencies:

1 2 3 4 5 6 7 8 9 10 log index

1 1 1 2 2 3 3 3
S1 [x3 q<8|j«2 | x—q|z<5|y—1|y<3]| qj

leader for term 4

1 1 1 2 2 3 3
S2 x—3|q<8|j—2 | x—q|z<5|y<1]|y<3

1 1 1 2 2 3 3 3 3
S3 x—3|q8|j—2 | x—q|z<5|y<1|y<3]| g—j | x4

> followers

1 1
S4 X<—3]q<8

1 1 1 2 2 2 2 2 2
S5 X<—3]|q8]| j«-2 | Xx—q|z<5|y<3]|) | X8 | x4

-

Raft minimizes special code for repairing inconsistencies:
= Leader assumes its log is correct
= Normal operation will repair all inconsistencies

August 29, 2016 The Raft Consensus Algorithm Slide 16

Goal: high level of consistency between logs
e If log entries on different servers have same index and term:

Log Matching Property

= They store the same command
= The logs are identical in all preceding entries

e If agiven entry is committed, all preceding entries are also
committed

August 29, 2016

1 2 3 4 5 6 7 8 9 10
1 1 1 2 2 3 3 3 3 3
x—3|q<8|j—2 | x—q|z5|y<—1|y<3| g—j | x<4]|z—6
1 1 1 2 2 3 4 4
x—3|q8|j2 | x—q|z5|y<1| X2z |y<T7

The Raft Consensus Algorithm

Slide 17

AppendEntries Consistency Check

e AppendEntries RPCs include <index, term> of entry preceding new one(s)

e Follower must contain matching entry; otherwise it rejects request
= |eader retries with lower log index

e Implements an induction step, ensures Log Matching Property

1 2 |3 4 1 2 |3 4 |5
: 1| 1 [[2] 3 1| 1 || 3
leader: x—3|q—8 X:qli(IL x«3|q8| x—q| y«1
: 1| 1] 2 122212
follower before: |, ”3lq8|x—q x—3|q—8| j—2 |y—6|a—x x—3|q—8| j—2 |y—6]a—x
: 1| 1] 213 12221 1 [1] 2|3
follower after: x3 | g8 | x—q [yt x—3|q—8|j—2 [y—6|y—6 x—3|q—8|x—q|y—1

Example #1: success Example #2: mismatch Example #3: success

August 29, 2016 The Raft Consensus Algorithm Slide 18

Safety: Leader Completeness

e Once log entry committed, all future

leaders must store that entry Leader election for term 4:
e Servers with incomplete logs must not 123456789
get elected. | s, [1[aT1]2]2]3]3]3
- Candldatc_as include index and term of last s, [1]1]112]2]3]3
log entry in RequestVote RPCs
= Voting server denies vote if its log is more Ssll111]2]12131313]3
up-to-date s, 11111112]12]13]3]|3
= Logs ranked by <lastTerm, lastindex> Ss(1[1]1]12]2]2(2[2]2

August 29, 2016 The Raft Consensus Algorithm Slide 19

Raft Evaluation

e Formal proof of safety
= Ongaro dissertation
= UW mechanically checked proof (50 klines)

e C++ implementation (2000 lines)
= 100’s of clusters deployed by Scale Computing

e Performance analysis of leader election
= Converges quickly even with 12-24 ms timeouts

e User study of understandability

August 29, 2016 The Raft Consensus Algorithm Slide 20

User Study: Is Raft Simpler than Paxos?

e 43 students in 2 graduate OS classes (Berkeley and Stanford)
= Group 1: Raft video, Raft quiz, then Paxos video, Paxos quiz
= Group 2: Paxos video, Paxos quiz, then Raft video, Raft quiz

e Instructional videos:
= Same instructor (Ousterhout)
= Covered same functionality: consensus, replicated log, cluster reconfiguration
» Fleshed out missing pieces for Paxos
= Videos available on YouTube

e Quizzes:
= Questions in 3 general categories
= Same weightings for both tests

e Experiment favored Paxos slightly:
= 15 students had prior experience with Paxos

August 29, 2016 The Raft Consensus Algorithm Slide 21

User Study Results

60
o 20
*%- [
50 | T o
+ O
+ -
40 | + X 1 8
© u—
3 X :+ ’_;_'l' X >
S 30t Wﬁ - 2
© + &
o % + 2
20 X X - 0
X)% X)SI-
X
10 F -
% B> Raft then Paxos +
Paxos then Raft x
0 [| | 1 [| 1
0 10 20 30 40 50 60

August 29, 2016

Paxos grade

The Raft Consensus Algorithm

15

10 f

o

N

implement explain

Bl Paxos much easier

1 Paxos somewhat easier
1 Roughly equal

=1 Raft somewhat easier
Bm Raft much easier

Slide 22

Impact

Hard to publish: Widely adopted:
e Rejected 3 times at major e 25 implementations before paper
conferences published
e Finally published in USENIX ATC e 83 implementations currently listed on
2014 Raft home page
 Challenges: e >10versions in production
= PCs uncomfortable with _
understandability as metric e Taughtin graduate OS classes
= Hard to evaluate = MIT, Stanford, Washington, Harvard, Duke,

= Complexity impresses PCs Brown, Colorado, ...

August 29, 2016 The Raft Consensus Algorithm Slide 23

Additional Information

e Other aspects of Raft (see paper or Ongaro dissertation):
= Communication with clients (linearizability)
= Cluster liveness
= Log truncation

e Other consensus algorithms:
= Viewstamped Replication (Oki & Liskov, MIT)
= ZooKeeper (Hunt, Konar, Junqueira, Read, Yahoo!)

August 29, 2016 The Raft Consensus Algorithm Slide 24

Conclusions

e Understandability deserves more emphasis in algorithm design
= Decompose the problem
= Minimize state space

e Making a system simpler can have high impact

e Raft better than Paxos for teaching and implementation:
= Easier to understand
= More complete

August 29, 2016 The Raft Consensus Algorithm Slide 25

Replicated
And
Fault

Tolerant

Extra Slides

v

¥ PLATFORMLARB

Raft Properties

e Election Safety: at most one leader can be elected in a given term
e Leader Append-Only: a leader never modifies or deletes entries in its
log

e Log Matching: if two logs contain an entry with the same index and
term, then the logs are identical in all entries up through the given index

e Leader Completeness: if a log entry is committed, then that entry will
be present in the logs of all future leaders

e State Machine Safety: if a server has applied a log entry at a given
Index to its state machine, no other server will ever apply a different log
entry for the same index

August 29, 2016 The Raft Consensus Algorithm Slide 28

Leader Changes

e Logs may beinconsistent
after leader change

e NoO special steps by new
leader:

= Start normal operation

= Followers’ logs will eventually
match leader

e Leader’s log is “the truth”

August 29, 2016

log index

leader for
term 8

possible
followers

1

234567 89101112

11114[415]5[6]6]6

N I 15 B [P [SN O [
h N
§ EAN
Ul
Ul
o
o
[e))
o
I o=

Y B 55 N [[) I (N I [
Y B 55 N [[) I (N I [

The Raft Consensus Algorithm Slide 29

