
Designing for Understandability:
the Raft Consensus Algorithm

Diego Ongaro

John Ousterhout

Stanford University

August 29, 2016 The Raft Consensus Algorithm Slide 2

Algorithms Should Be Designed For ...

Correctness?

Efficiency?

Conciseness?

Understandability!

August 29, 2016 The Raft Consensus Algorithm Slide 3

Overview

● Consensus:

 Allows collection of machines to work as coherent group

 Continuous service, even if some machines fail

● Paxos has dominated discussion for 25 years

 Hard to understand

 Not complete enough for real implementations

● New consensus algorithm: Raft

 Primary design goal: understandability (intuition, ease of explanation)

 Complete foundation for implementation

 Different problem decomposition

● Results:

 User study shows Raft more understandable than Paxos

 Widespread adoption

August 29, 2016 The Raft Consensus Algorithm Slide 4

State Machine

● Responds to external stimuli

● Manages internal state

● Examples: many storage

systems, services

 Memcached

 RAMCloud

 HDFS name node

 ...

request

result Clients
State

Machine

Log

Consensus

Module

State

Machine

x←1 y←3 x←4

August 29, 2016 The Raft Consensus Algorithm Slide 5

Replicated State Machine

● Replicated log ensures state machines execute same commands in same order

● Consensus module ensures proper log replication

● System makes progress as long as any majority of servers are up

● Failure model: delayed/lost messages, fail-stop (not Byzantine)

Clients

Servers

Log

Consensus

Module

State

Machine

x←1 y←3 x←4

Log

Consensus

Module

State

Machine

x←1 y←3 x←4

z←x

z←x z←x z←x

August 29, 2016 The Raft Consensus Algorithm Slide 6

Paxos (Single Decree)

Proposers Acceptors

proposal # > any previous?

Majority? Select value for

highest proposal # returned;

if none, choose own value

proposal # >= any previous?

Majority? Value chosen

Choose unique proposal #

August 29, 2016 The Raft Consensus Algorithm Slide 7

Paxos Problems

● Impenetrable: hard to develop intuitions

 Why does it work?

 What is the purpose of each phase?

● Incomplete

 Only agrees on single value

 Doesn’t address liveness

 Choosing proposal values?

 Cluster membership management?

● Inefficient

 Two rounds of messages to choose one value

● No agreement on the details

Not a good foundation for practical implementations

“The dirty little secret of the NSDI

community is that at most five

people really, truly understand every

part of Paxos :-)”

— NSDI reviewer

“There are significant gaps between

the description of the Paxos

algorithm and the needs of a real-

world system ... the final system will

be based on an unproven protocol”

— Chubby authors

August 29, 2016 The Raft Consensus Algorithm Slide 8

Raft Challenge

● Is there a different consensus algorithm that’s easier to

understand?

● Make design decisions based on understandability:

 Which approach is easier to explain?

● Techniques:

 Problem decomposition

 Minimize state space
● Handle multiple problems with a single mechanism

● Eliminate special cases

● Maximize coherence

● Minimize nondeterminism

August 29, 2016 The Raft Consensus Algorithm Slide 9

Raft Decomposition

1. Leader election:

 Select one server to act as leader

 Detect crashes, choose new leader

2. Log replication (normal operation)

 Leader accepts commands from clients, appends to its log

 Leader replicates its log to other servers (overwrites inconsistencies)

3. Safety

 Keep logs consistent

 Only servers with up-to-date logs can become leader

August 29, 2016 The Raft Consensus Algorithm Slide 10

Server States and RPCs

Candidate

Follower

Leader

start

no

heartbeat

win

election

discover

higher

term

Passive (but expects

regular heartbeats)

Issues RequestVote RPCs

to get elected as leader

Issues AppendEntries RPCs:

• Replicate its log

• Heartbeats to maintain leadership

August 29, 2016 The Raft Consensus Algorithm Slide 11

Terms

● At most 1 leader per term

● Some terms have no leader (failed election)

● Each server maintains current term value (no global view)

 Exchanged in every RPC

 Peer has later term? Update term, revert to follower

 Incoming RPC has obsolete term? Reply with error

Terms identify obsolete information

Term 1 Term 3 Term 4 Term 5 Term 2

time

Elections Normal

Operation

Split

Vote

August 29, 2016 The Raft Consensus Algorithm Slide 12

Leader Election

Become candidate

currentTerm++,

vote for self

Send RequestVote RPCs

to other servers

timeout

votes from majority

Become leader,

send heartbeats

Become

follower

RPC from leader

August 29, 2016 The Raft Consensus Algorithm Slide 13

Election Correctness

● Safety: allow at most one winner per term

 Each server gives only one vote per term (persist on disk)

 Majority required to win election

● Liveness: some candidate must eventually win

 Choose election timeouts randomly in [T, 2T] (e.g. 150-300 ms)

 One server usually times out and wins election before others time out

 Works well if T >> broadcast time

● Randomized approach simpler than ranking

Voted for

candidate A

B can’t also

get majority

Servers

August 29, 2016 The Raft Consensus Algorithm Slide 14

Normal Operation

● Client sends command to leader

● Leader appends command to its log

● Leader sends AppendEntries RPCs to all followers

● Once new entry committed:

 Leader executes command in its state machine, returns result to client

 Leader notifies followers of committed entries in subsequent AppendEntries RPCs

 Followers execute committed commands in their state machines

● Crashed/slow followers?

 Leader retries AppendEntries RPCs until they succeed

● Optimal performance in common case:

 One successful RPC to any majority of servers

August 29, 2016 The Raft Consensus Algorithm Slide 15

Log Structure

● Must survive crashes (store on disk)

● Entry committed if safe to execute in state machines

 Replicated on majority of servers by leader of its term

1
x←3 leader for term 3

log index term

command

1
q←8

1
j←2

2
x←q

3
y←1

3
y←3

3
q←j

3
x←4

3
z←6

2
z←5

1 2 3 4 5 6 7 8 9 10

followers

committed entries

1
x←3

1
q←8

1
j←2

2
x←q

3
y←1

3
y←3

2
z←5

1
x←3

1
q←8

1
j←2

2
x←q

3
y←1

3
y←3

3
q←j

3
x←4

3
z←6

2
z←5

1
x←3

1
q←8

1
x←3

1
q←8

1
j←2

2
x←q

3
y←1

3
y←3

3
q←j

2
z←5

August 29, 2016 The Raft Consensus Algorithm Slide 16

Log Inconsistencies

Crashes can result in log inconsistencies:

Raft minimizes special code for repairing inconsistencies:

 Leader assumes its log is correct

 Normal operation will repair all inconsistencies

1
x←3 leader for term 4

log index

1
q←8

1
j←2

2
x←q

3
y←1

3
y←3

3
q←j

2
z←5

1 2 3 4 5 6 7 8 9 10

followers

1
x←3

1
q←8

1
j←2

2
x←q

3
y←1

3
y←3

2
z←5

1
x←3

1
q←8

1
j←2

2
x←q

3
y←1

3
y←3

3
q←j

3
x←4

2
z←5

1
x←3

1
q←8

1
x←3

1
q←8

1
j←2

2
x←q

2
z←5

2
y←3

2
q←j

2
x←8

2
x←4

s1

s2

s3

s4

s5

August 29, 2016 The Raft Consensus Algorithm Slide 17

Log Matching Property

Goal: high level of consistency between logs

● If log entries on different servers have same index and term:

 They store the same command

 The logs are identical in all preceding entries

● If a given entry is committed, all preceding entries are also

committed

1
x←3

1
q←8

1
j←2

2
x←q

3
y←1

3
y←3

3
q←j

3
x←4

3
z←6

2
z←5

1 2 3 4 5 6 7 8 9 10

1
x←3

1
q←8

1
j←2

2
x←q

3
y←1

4
x←z

2
z←5

4
y←7

August 29, 2016 The Raft Consensus Algorithm Slide 18

AppendEntries Consistency Check

● AppendEntries RPCs include <index, term> of entry preceding new one(s)

● Follower must contain matching entry; otherwise it rejects request

 Leader retries with lower log index

● Implements an induction step, ensures Log Matching Property

1
x←3

1
q←8

2
x←q

3
y←1

1 2 3 4

1
x←3

1
q←8

2
x←q

leader:

follower before:

follower after: 1
x←3

1
q←8

2
x←q

3
y←1

Example #1: success

1
x←3

1
q←8

2
x←q

3
y←1

1 2 3 4 5

1
x←3

1
q←8

1
j←2

1
x←3

1
q←8

2
x←q

3
y←1

1
y←6

1
a←x

Example #3: success

1
x←3

1
q←8

2
x←q

3
y←1

1 2 3 4 5

1
x←3

1
q←8

1
j←2

1
x←3

1
q←8

1
j←2

1
y←6

1
y←6

1
a←x

1
y←6

Example #2: mismatch

August 29, 2016 The Raft Consensus Algorithm Slide 19

Safety: Leader Completeness

● Once log entry committed, all future

leaders must store that entry

● Servers with incomplete logs must not

get elected:

 Candidates include index and term of last

log entry in RequestVote RPCs

 Voting server denies vote if its log is more

up-to-date

 Logs ranked by <lastTerm, lastIndex>

1 2 3 4 5 6 7 8 9

1 1 1 2 2 3 3 3 s1

1 1 1 2 2 3 3 s2

1 1 1 2 2 3 3 3 3 s3

1 1 1 2 2 3 3 3 s4

1 1 1 2 2 s5 2 2 2 2

Leader election for term 4:

August 29, 2016 The Raft Consensus Algorithm Slide 20

Raft Evaluation

● Formal proof of safety

 Ongaro dissertation

 UW mechanically checked proof (50 klines)

● C++ implementation (2000 lines)

 100’s of clusters deployed by Scale Computing

● Performance analysis of leader election

 Converges quickly even with 12-24 ms timeouts

● User study of understandability

August 29, 2016 The Raft Consensus Algorithm Slide 21

User Study: Is Raft Simpler than Paxos?

● 43 students in 2 graduate OS classes (Berkeley and Stanford)

 Group 1: Raft video, Raft quiz, then Paxos video, Paxos quiz

 Group 2: Paxos video, Paxos quiz, then Raft video, Raft quiz

● Instructional videos:

 Same instructor (Ousterhout)

 Covered same functionality: consensus, replicated log, cluster reconfiguration

 Fleshed out missing pieces for Paxos

 Videos available on YouTube

● Quizzes:

 Questions in 3 general categories

 Same weightings for both tests

● Experiment favored Paxos slightly:

 15 students had prior experience with Paxos

August 29, 2016 The Raft Consensus Algorithm Slide 22

User Study Results

Impact

Hard to publish:

● Rejected 3 times at major

conferences

● Finally published in USENIX ATC

2014

● Challenges:

 PCs uncomfortable with

understandability as metric

 Hard to evaluate

 Complexity impresses PCs

Widely adopted:

● 25 implementations before paper

published

● 83 implementations currently listed on

Raft home page

● >10 versions in production

● Taught in graduate OS classes

 MIT, Stanford, Washington, Harvard, Duke,

Brown, Colorado, ...

August 29, 2016 The Raft Consensus Algorithm Slide 23

August 29, 2016 The Raft Consensus Algorithm Slide 24

Additional Information

● Other aspects of Raft (see paper or Ongaro dissertation):

 Communication with clients (linearizability)

 Cluster liveness

 Log truncation

● Other consensus algorithms:

 Viewstamped Replication (Oki & Liskov, MIT)

 ZooKeeper (Hunt, Konar, Junqueira, Read, Yahoo!)

August 29, 2016 The Raft Consensus Algorithm Slide 25

Conclusions

● Understandability deserves more emphasis in algorithm design

 Decompose the problem

 Minimize state space

● Making a system simpler can have high impact

● Raft better than Paxos for teaching and implementation:

 Easier to understand

 More complete

The Raft Consensus Algorithm August 29, 2016 Slide 26

Why “Raft”?

Paxos

Replicated
And

Fault

Tolerant

Extra Slides

August 29, 2016 The Raft Consensus Algorithm Slide 28

Raft Properties

● Election Safety: at most one leader can be elected in a given term

● Leader Append-Only: a leader never modifies or deletes entries in its

log

● Log Matching: if two logs contain an entry with the same index and

term, then the logs are identical in all entries up through the given index

● Leader Completeness: if a log entry is committed, then that entry will

be present in the logs of all future leaders

● State Machine Safety: if a server has applied a log entry at a given

index to its state machine, no other server will ever apply a different log

entry for the same index

August 29, 2016 The Raft Consensus Algorithm Slide 29

Leader Changes

● Logs may be inconsistent

after leader change

● No special steps by new

leader:

 Start normal operation

 Followers’ logs will eventually

match leader

● Leader’s log is “the truth”

1 2 3 4 5 6 7 8 9 10

1 1 1 4 4 5 5 6 6 6

11 12

1 1 1 4 4 5 5 6 6

1 1 1 4

1 1 1 4 4 5 5 6 6 6

1 1 1 4 4 5 5 6 6 7

1 1 1 4 4

1 1 1 2

6

7 6

4 4

2 2 3 3 3 3

log index

leader for
term 8

possible
followers

f1

f2

f3

f4

f5

f6

Extraneous

Entries

Missing

Entries

