The Raft Consensus Algorithm

Diego Ongaro John Ousterhout

Stanford University

http://raftconsensus.github.io

What is Consensus?

e Agreement on shared state (single system image)

e Recovers from server failures autonomously
= Minority of servers fail: no problem
= Majority fail: lose availability, retain consistency

0 O
X X

Servers

e Key to building consistent storage systems

September 2014 Raft Consensus Algorithm Slide 2

Inside a Consistent System

e TODO: eliminate single point of failure

e An ad hoc algorithm

= “This case is rare and typically occurs as a result
of a network partition with replication lag.”

— OR -

e A consensus algorithm (built-in or library)
= Paxos, Raft, ...

e A consensus service
= ZooKeeper, etcd, consul, ...

September 2014 Raft Consensus Algorithm Slide 3

Replicated State Machines

CEEEERE

P < T

z 6 \ z, 6
Log
X3 |y«2|x<1|z<%6 X3 |y«2|x<1|z<%%6

J

J

(Consensus Consensus Consknsus
Module achine Module achine oYlule

4]

Log\

Ste\

Ma

X

y

ine
1
2

z, 6

X3 | y«2

X< 1

4

|

J

September 2014

Replicated log = replicated state machine
= All servers execute same commands in same order

Consensus module ensures proper log replication

Clients

Servers

System makes progress as long as any majority of servers are up

Failure model: fail-stop (not Byzantine), delayed/lost messages

Raft Consensus Algorithm

Slide 4

e Top-level system configuration

e Replicate entire database state

How Is Consensus Used?

repl. state machine
S171S2

|5

SHm

2PC

repl. state machine

S1[11S2

(55

P

.
.
.
b,
-

leader

standby

staﬁdby

N

N

N

ra "

repl. state machine

S1[71S2

(&5

repl. state machine
S1J7S2

|5

September 2014

repl. state machine

S11S82

(&5

) A

2PC 2PC

Raft Consensus Algorithm

Slide 5

Paxos Protocol

e Leslie Lamport, 1989

e Nearly synonymous with consensus

“The dirty little secret of the NSDI community is that at
most five people really, truly understand every part of
Paxos ;-).” — NSDI reviewer

“There are significant gaps between the description of
the Paxos algorithm and the needs of a real-world
system...the final system will be based on an unproven
protocol.” — Chubby authors

September 2014 Raft Consensus Algorithm Slide 6

Raft's Design for Understandability

e We wanted the best algorithm for building real
systems

= Must be correct, complete, and perform well
= Must also be understandable

e “What would be easier to understand or explain?”
= Fundamentally different decomposition than Paxos
= Less complexity in state space
*= Less mechanism

September 2014 Raft Consensus Algorithm Slide 7

Raft User Study

Quiz Grades
60 :
50 | {1 220
T g
wt 7 + - 1 £
) _H_ FU
g - g
> 30 * - o
5 oy, g
o0c 20 < S g
- x x - C
% % 0
10 | .
% H X Raft then Paxos +
0 Paxos then Raft x

0 10 20 30 40 50 60
Paxos grade

September 2014 Raft Consensus Algorithm

Survey Results

10 F

R
[§ A\
N N
g N\ N\
A N\ N
N\ N
I N N
S s s
FZEN 2L IN
implement explain

Bm Paxos much easier

21 Paxos somewhat easier
3 Roughly equal

=1 Raft somewhat easier
B Raft much easier

Slide 8

Raft Overview

1. Leader election
= Select one of the servers to act as cluster leader
= Detect crashes, choose new leader

2. Log replication (normal operation)

* | eader takes commands from clients, appends them
to its log

= | eader replicates its log to other servers (overwriting
Inconsistencies)

3. Safety

= Only a server with an up-to-date log can become
leader

September 2014 Raft Consensus Algorithm Slide 9

RaftScope Visualization

September 2014 Raft Consensus Algorithm Slide 10

Core Raft Review

1. Leader election
= Heartbeats and timeouts to detect crashes
= Randomized timeouts to avoid split votes
= Majority voting to guarantee at most one leader per term

2. Log replication (normal operation)
= |eader takes commands from clients, appends them to its log

= |eader replicates its log to other servers (overwriting
inconsistencies)

= Built-in consistency check simplifies how logs may differ

3. Safety
= Only elect leaders with all committed entries in their logs
= New leader defers committing entries from prior terms

September 2014 Raft Consensus Algorithm Slide 11

Randomized Timeouts

e How much randomization is needed to avoid split votes?

1.0 - B

0.9 - o Timeout Range
5 0-8 1 — 150-150 ms
£ 0.7 - /

—— 150-151 ms

2 0.6 -
g 0.5 - | — 150-155 ms
504- — 150-175 ms
£03- — 150-200 ms
O 0.2 J d

0. }/ —— 150-300 ms

004 £ —r

1 1 P T T1Tihnl 1 IF T Trrir 1 P 1T T T | P 1T 1rl
100 1000 10000 1e+05

Time Without Leader (ms)

e Conservatively, use random range ~10x network latency

September 2014 Raft Consensus Algorithm Slide 12

Raft Implementations (Stale)

go-raft Go
kanaka/raft.js JS
hashicorp/raft Go
rafter Erlang
ckite Scala
kontiki Haskell
LogCabin C++
akka-raft Scala
floss Ruby
CRaft C
barge Java
harryw/raft Ruby

py-raft Python

September 2014

Ben Johnson (Sky) and Xiang Li (CoreOS)
Joel Martin

Armon Dadgar (HashiCorp)
Andrew Stone (Basho)
Pablo Medina

Nicolas Trangez

Diego Ongaro (Stanford)
Konrad Malawski
Alexander Flatten
Willem-Hendrik Thiart

Dave Rusek

Harry Wilkinson

Toby Burress

Raft Consensus Algorithm Slide 13

Facebook HydraBase Example

f
!
|

RS2 RSa1
Witness Witness
Follower Follower |

RS1
Witness
Follower

https://code.facebook.com/posts/321111638043166/hydrabase-the-evolution-of-hbase-facebook/

September 2014 Raft Consensus Algorithm Slide 14

Conclusions

e Consensus widely regarded as difficult

e Raft designed for understandability
= Easier to teach in classrooms

= Better foundation for building practical systems

e Paper/thesis covers much more
= Cluster membership changes (simpler in thesis)
= Log compaction (expanded tech report/thesis)

= Client interaction (expanded tech report/thesis)
= Evaluation (thesis)

September 2014 Raft Consensus Algorithm Slide 15

Questions

raftconsensus.github.io

September 2014 Raft Consensus Algorithm Slide 16

