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What is Consensus?

e Agreement on shared state (single system image)

e Recovers from server failures autonomously
= Minority of servers fail: no problem
= Majority fail: lose availability, retain consistency
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e Key to building consistent storage systems
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Inside a Consistent System

e TODO: eliminate single point of failure

e An ad hoc algorithm

= “This case is rare and typically occurs as a result
of a network partition with replication lag.”

— OR -

e A consensus algorithm (built-in or library)
= Paxos, Raft, ...

e A consensus service
= ZooKeeper, etcd, consul, ...
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Replicated State Machines

CEEEERE

P < T

z 6 \ z, 6
Log
X3 |y«2|x<1|z<%6 X3 |y«2|x<1|z<%%6

J

J

(Consensus Consensus Consknsus
Module achine Module achine oYlule

4]

Log\

Ste\

Ma

X

y

ine
1
2

z, 6

X3 | y«2

X< 1

4

|

J

September 2014

Replicated log = replicated state machine
= All servers execute same commands in same order

Consensus module ensures proper log replication

Clients

Servers

System makes progress as long as any majority of servers are up

Failure model: fail-stop (not Byzantine), delayed/lost messages
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e Top-level system configuration

e Replicate entire database state

How Is Consensus Used?
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Paxos Protocol

e Leslie Lamport, 1989

e Nearly synonymous with consensus

“The dirty little secret of the NSDI community is that at
most five people really, truly understand every part of
Paxos ;-).” — NSDI reviewer

“There are significant gaps between the description of
the Paxos algorithm and the needs of a real-world
system...the final system will be based on an unproven
protocol.” — Chubby authors
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Raft's Design for Understandability

e We wanted the best algorithm for building real
systems

= Must be correct, complete, and perform well
= Must also be understandable

e “What would be easier to understand or explain?”
= Fundamentally different decomposition than Paxos
= Less complexity in state space
*= Less mechanism
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Raft User Study
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Survey Results
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Raft Overview

1. Leader election
= Select one of the servers to act as cluster leader
= Detect crashes, choose new leader

2. Log replication (normal operation)

* | eader takes commands from clients, appends them
to its log

= | eader replicates its log to other servers (overwriting
Inconsistencies)

3. Safety

= Only a server with an up-to-date log can become
leader
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RaftScope Visualization
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Core Raft Review

1. Leader election
= Heartbeats and timeouts to detect crashes
= Randomized timeouts to avoid split votes
= Majority voting to guarantee at most one leader per term

2. Log replication (normal operation)
= |eader takes commands from clients, appends them to its log

= |eader replicates its log to other servers (overwriting
inconsistencies)

= Built-in consistency check simplifies how logs may differ

3. Safety
= Only elect leaders with all committed entries in their logs
= New leader defers committing entries from prior terms
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Randomized Timeouts

e How much randomization is needed to avoid split votes?
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e Conservatively, use random range ~10x network latency
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Raft Implementations (Stale)

go-raft Go
kanaka/raft.js JS
hashicorp/raft Go
rafter Erlang
ckite Scala
kontiki Haskell
LogCabin C++
akka-raft Scala
floss Ruby
CRaft C
barge Java
harryw/raft Ruby

py-raft Python
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Facebook HydraBase Example
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https://code.facebook.com/posts/321111638043166/hydrabase-the-evolution-of-hbase-facebook/
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Conclusions

e Consensus widely regarded as difficult

e Raft designed for understandability
= Easier to teach in classrooms

= Better foundation for building practical systems

e Paper/thesis covers much more
= Cluster membership changes (simpler in thesis)
= Log compaction (expanded tech report/thesis)

= Client interaction (expanded tech report/thesis)
= Evaluation (thesis)
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Questions

raftconsensus.github.io
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