An Introduction to
Consensus with Raft

Diego Ongaro John Ousterhout
Stanford University

%

http://raftconsensus.github.io

Distributed Systems

availability or consistency

April 2014 Raft Consensus Algorithm Slide 3

Inside a Consistent System

e TODO: eliminate single point of failure

e An ad hoc algorithm

= “This case is rare and typically occurs as a result
of a network partition with replication lag.”

= Watch out for @aphyr
—OR -
e A consensus algorithm (built-in or library)

= Paxos, Raft, ...

e A consensus service
= ZooKeeper, etcd, consul, ...

April 2014 Raft Consensus Algorithm Slide 4

What is Consensus?

e Agreement on shared state (single system image)

e Recovers from server failures autonomously
= Minority of servers fail: no problem
= Majority fail: lose availability, retain consistency

April 2014 Raft Consensus Algorithm Slide 5

Why Is Consensus Needed?

e Key to building consistent storage systems

e Top-level system configuration
= Which server is my SQL master?
= What shards exist in my storage system?
= Which servers store shard X?

e Sometimes used to replicate entire database state
(e.g., Megastore, Spanner)

April 2014 Raft Consensus Algorithm Slide 6

Goal: Replicated Log

CEEEEEE

(Consensus Consensus Consknsus
Module achine Module achine oYlule

Ste\

Ma

ine

x 1 x 1 x 1

NI < <

z 6 z, 6 z, 6

i_‘ Log i_‘ Log i_‘

z<&-6 X3 |y«2|x<1|z<%%6 X3 |y«2|x<1|z<%6
- /'

J

e Replicated log = replicated state machine
= All servers execute same commands in same order

e Consensus module ensures proper log replication

Clients

Servers

e System makes progress as long as any majority of servers are up

e Failure model: fail-stop (not Byzantine), delayed/lost messages

April 2014

Raft Consensus Algorithm

Slide 7

Paxos Protocol

e Leslie Lamport, 1989
e Nearly synonymous with consensus

e Hard to understand

“The dirty little secret of the NSDI community is that at
most five people really, truly understand every part of
Paxos ;-).” — Anonymous NSDI reviewer

e Bad foundation for building systems

“There are significant gaps between the description of the
Paxos algorithm and the needs of a real-world
system...the final system will be based on an unproven
protocol.” — Chubby authors

April 2014 Raft Consensus Algorithm Slide 8

Raft's Design for Understandability

e We wanted the best algorithm for building real
systems

= Must be correct, complete, and perform well
= Must also be understandable

e “What would be easier to understand or explain?”
= Fundamentally different decomposition than Paxos
= Less complexity in state space
*= Less mechanism

April 2014 Raft Consensus Algorithm Slide 9

User study

Quiz Grades
60 . T . : :
50 + -
+
wt 7 + - -
)
g x e
> 30 - + .
20 F + X X -
x¥ w %
X
10 -
% H X Raft then Paxos +
0 Paxos then Raft x

0 10 20 30 40 50
Paxos grade

60

20

number of participants

April 2014 Raft Consensus Algorithm

Survey Results

10 F

R :
[§ A\
N N
g N N\
[N\ N
N\ N
I N N
S s s
FZEN 2L IN
implement explain

Bm Paxos much easier

21 Paxos somewhat easier
3 Roughly equal

=1 Raft somewhat easier
B Raft much easier

Slide 10

Raft Overview

1. Leader election
= Select one of the servers to act as leader
= Detect crashes, choose new leader

2. Log replication (normal operation)
= |eader takes commands from clients, appends them to its log

= |eader replicates its log to other servers (overwriting
inconsistencies)

3. Safety

= Only elect leaders with all committed entries in their logs

April 2014 Raft Consensus Algorithm Slide 11

Server States

e At any given time, each server is either:

= Follower: completely passive replica (issues no RPCs, responds
to incoming RPCs)

= (Candidate: used to elect a new leader

= |eader: handles all client interactions, log replication
e At most one viable leader at a time

time out, receive votes from
start start election majority of servers

S~

FolIower) (Candidate) (Leader)

April 2014 Raft Consensus Algorithm Slide 12

Terms

Term 1 Term2 Term 3 Term 4 Term 5

v/ N/

Elections Split Vote Normal Operation

e Time divided into terms:
= Election
= Normal operation under a single leader

e At most one leader per term
e Each server maintains current term value
e Key role of terms: identify obsolete information

April 2014 Raft Consensus Algorithm Slide 13

Leader Election

Leaders send heartbeats to maintain authority.

Upon election timeout, start new election:

Increment current term
Change to Candidate state
Vote for self

Send Request Vote RPCs to all other servers,
wait until either:

1. Receive votes from majority of servers:
e Become leader, send heartbeats to all other servers

2. Receive RPC from valid leader:
e Return to follower state

3. No-one wins election (election timeout elapses):
e Increment term, start new election

Slide 14

Leader Election Visualization

e The Secret Lives of Data
http://thesecretlivesofdata.com

e Visualizes distributed algorithms, starting with Raft

e Project by Ben Johnson (author of go-raft)

April 2014 Raft Consensus Algorithm Slide 15

Randomized Timeouts

e If we choose election timeouts randomly,

1.0 - i

0.9 - Timeout Range
s 0.8 ~ 150-150 ms
5 0.7 -

— 150-151 ms

2 0.6 -
-023 0.5 - — 150-155 ms
§ 0.4 - — 150-175 ms
£ 0.3 — 150-200 ms
O 0.2 -

0.1 - 150-300 ms

0.0 - —

1 | P 1T 1 rrrn 1 F 1 1Trirn 1 P T T Hren 1 I 1T 1nhi

100 1000 10000 1e+05
Time Without Leader (ms)

e One server usually times out and wins election
before others wake up

Slide 16

Raft Paper

e Log replication
e Client interaction
e Cluster membership changes

e Log compaction

e To appear: 2014 USENIX Annual Technical Conf.
= June 19-20 in Philadelphia
= Draft on Raft website

April 2014 Raft Consensus Algorithm Slide 17

Raft Implementations

kanaka/raft.js JS
go-raft Go
hashicorp/raft Go
LogCabin C++
ckite Scala
peterbourgon/raft Go
rafter Erlang
barge Java
py-raft Python
ocaml-raft OCaml

April 2014

Joel Martin

Ben Johnson (Sky) and Xiang Li (CoreOS)
Armon Dadgar (HashiCorp)

Diego Ongaro (Stanford)

Pablo Medina

Peter Bourgon

Andrew Stone (Basho)

Dave Rusek

Toby Burress

Heidi Howard (Cambridge)

Raft Consensus Algorithm Slide 18

Best Logo: go-raft

by Brandon Philips (CoreOS)

April 2014 Raft Consensus Algorithm Slide 19

Summary

e Consensus is key to building consistent systems
e Design for understandability

e Raft separates leader election from log replication
= |_eader election uses voting and randomized timeouts

More at http://raftconsensus.github.io:

e Paper draft, other talks
e 10 to 50+ implementations

e raft-dev mailing list

Diego Ongaro @ongardie

Slide 20

