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Distributed Systems

availability or consistency
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Inside a Consistent System

e TODO: eliminate single point of failure

e An ad hoc algorithm

= “This case is rare and typically occurs as a result
of a network partition with replication lag.”

= Watch out for @aphyr
—OR -
e A consensus algorithm (built-in or library)

= Paxos, Raft, ...

e A consensus service
= ZooKeeper, etcd, consul, ...
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What is Consensus?

e Agreement on shared state (single system image)

e Recovers from server failures autonomously
= Minority of servers fail: no problem
= Majority fail: lose availability, retain consistency
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Why Is Consensus Needed?

e Key to building consistent storage systems

e Top-level system configuration
= Which server is my SQL master?
= What shards exist in my storage system?
= Which servers store shard X?

e Sometimes used to replicate entire database state
(e.g., Megastore, Spanner)
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Goal: Replicated Log
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e Replicated log = replicated state machine
=  All servers execute same commands in same order

e Consensus module ensures proper log replication

Clients

Servers

e System makes progress as long as any majority of servers are up

e Failure model: fail-stop (not Byzantine), delayed/lost messages
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Paxos Protocol

e Leslie Lamport, 1989
e Nearly synonymous with consensus

e Hard to understand

“The dirty little secret of the NSDI community is that at
most five people really, truly understand every part of
Paxos ;-).” — Anonymous NSDI reviewer

e Bad foundation for building systems

“There are significant gaps between the description of the
Paxos algorithm and the needs of a real-world
system...the final system will be based on an unproven
protocol.” — Chubby authors
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Raft's Design for Understandability

e We wanted the best algorithm for building real
systems

= Must be correct, complete, and perform well
= Must also be understandable

e “What would be easier to understand or explain?”
= Fundamentally different decomposition than Paxos
= Less complexity in state space
*= Less mechanism
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User study
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Raft Overview

1. Leader election
= Select one of the servers to act as leader
= Detect crashes, choose new leader

2. Log replication (normal operation)
= |eader takes commands from clients, appends them to its log

= |eader replicates its log to other servers (overwriting
inconsistencies)

3. Safety

= Only elect leaders with all committed entries in their logs
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Server States

e At any given time, each server is either:

= Follower: completely passive replica (issues no RPCs, responds
to incoming RPCs)

= (Candidate: used to elect a new leader

= |eader: handles all client interactions, log replication
e At most one viable leader at a time

time out, receive votes from
start start election majority of servers

S~

FolIower) (Candidate) ( Leader )
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Terms

Term 1 Term2 Term 3 Term 4 Term 5

v/ N/

Elections Split Vote  Normal Operation

e Time divided into terms:
= Election
= Normal operation under a single leader

e At most one leader per term
e Each server maintains current term value
e Key role of terms: identify obsolete information
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Leader Election

Leaders send heartbeats to maintain authority.

Upon election timeout, start new election:

Increment current term
Change to Candidate state
Vote for self

Send Request Vote RPCs to all other servers,
wait until either:

1. Receive votes from majority of servers:
e Become leader, send heartbeats to all other servers

2. Receive RPC from valid leader:
e Return to follower state

3. No-one wins election (election timeout elapses):
e Increment term, start new election
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Leader Election Visualization

e The Secret Lives of Data
http://thesecretlivesofdata.com

e Visualizes distributed algorithms, starting with Raft

e Project by Ben Johnson (author of go-raft)
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Randomized Timeouts

e If we choose election timeouts randomly,
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e One server usually times out and wins election
before others wake up
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Raft Paper

e Log replication
e Client interaction
e Cluster membership changes

e Log compaction

e To appear: 2014 USENIX Annual Technical Conf.
= June 19-20 in Philadelphia
= Draft on Raft website
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Raft Implementations

kanaka/raft.js JS
go-raft Go
hashicorp/raft Go
LogCabin C++
ckite Scala
peterbourgon/raft Go
rafter Erlang
barge Java
py-raft Python
ocaml-raft OCaml
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Best Logo: go-raft

by Brandon Philips (CoreOS)
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Summary

e Consensus is key to building consistent systems
e Design for understandability

e Raft separates leader election from log replication
= |_eader election uses voting and randomized timeouts

More at http://raftconsensus.github.io:

e Paper draft, other talks
e 10 to 50+ implementations

e raft-dev mailing list

Diego Ongaro @ongardie
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