
THE RAFT CONSENSUS ALGORITHM
DIEGO ONGARO AND JOHN OUSTERHOUT

STANFORD UNIVERSITY

MAY 2015

raftconsensus.github.io

https://raftconsensus.github.io/


MOTIVATION
Goal: shared key-value store (state machine)
Host it on a single machine attached to network

Pros: easy, consistent
Cons: prone to failure

With Raft, keep consistency yet deal with
failures



WHAT IS CONSENSUS
Agreement on shared state (single system image)
Recovers from server failures autonomously

Minority of servers fail: no problem
Majority fail: lose availability, retain
consistency

Servers

Key to building consistent storage systems



REPLICATED STATE MACHINES

x←3 y←2 x←1 z←6
Log

Consensus
Module

State
Machine

Log

Consensus
Module

State
Machine

Log

Consensus
Module

State
Machine

Servers

Clients

x 1

y 2

z 6

x←3 y←2 x←1 z←6

x 1

y 2

z 6

x←3 y←2 x←1 z←6

x 1

y 2

z 6

z←6

Replicated log ⇒ replicated state machine
All servers execute same commands in same order

Consensus module ensures proper log replication
System makes progress as long as any majority of servers
up
Failure model: fail-stop (not Byzantine), delayed/lost msgs



Failure model: fail-stop (not Byzantine), delayed/lost msgs

PAXOS PROTOCOL
Leslie Lamport, 1989
Nearly synonymous with
consensus

“The dirty little secret of the NSDI community is
that at most five people really, truly understand

every part of Paxos ;-).” 
—NSDI reviewer

“There are significant gaps between the
description of the Paxos algorithm and the

needs of a real-world system...the final system
will be based on an unproven protocol.” 

—Chubby authors



RAFT'S DESIGN FOR UNDERSTANDABILITY
We wanted an algorithm optimized for building real systems

Must be correct, complete, and perform well
Must also be understandable

“What would be easier to understand or explain?”

Fundamentally different decomposition than Paxos
Less complexity in state space
Less mechanism



RAFT OVERVIEW
1. Leader election

Select one of the servers to act as cluster leader
Detect crashes, choose new leader

2. Log replication (normal operation)
Leader takes commands from clients, appends to its log
Leader replicates its log to other servers (overwriting
inconsistencies)

3. Safety
Only a server with an up-to-date log can become leader



RAFTSCOPE VISUALIZATION



CORE RAFT REVIEW
1. Leader election

Heartbeats and timeouts to detect crashes
Randomized timeouts to avoid split votes
Majority voting to guarantee at most one leader per term

2. Log replication (normal operation)
Leader takes commands from clients, appends to its log
Leader replicates its log to other servers (overwriting
inconsistencies)
Built-in consistency check simplifies how logs may differ

3. Safety
Only elect leaders with all committed entries in their logs
New leader defers committing entries from prior terms



CONCLUSION
Consensus widely regarded as difficult
Raft designed for understandability

Easier to teach in classrooms
Better foundation for building practical systems

Pieces needed for a practical system:
Cluster membership changes (simpler in dissertation)

Log compaction (expanded tech report/dissertation)

Client interaction (expanded tech report/dissertation)

Evaluation 
(dissertation: understandability, correctness, leader election & replication performance)



QUESTIONS
raftconsensus.github.io

 mailing listraft-dev

https://groups.google.com/forum/#!forum/raft-dev
https://raftconsensus.github.io/

