THE RAFT CONSENSUS ALGORITHM

DIEGO ONGARO AND JOHN QUSTERHOUT
STANFORD UNIVERSITY
MAY 2015

raftconsensus.github.io

https://raftconsensus.github.io/

MOTIVATION

e Goal: shared key-value store (state machine)

e Host it on a single machine attached to network
» Pros: easy, consistent
= Cons: prone to failure

o With Raft, keep consistency yet deal with
failures

WHAT IS CONSENSUS

e Agreement on shared state (single system image)
e Recovers from server failures autonomously
= Minority of servers fail: no problem
= Majority fail: lose availability, retain
consistency

0 O
X X

Servers

e Key to building consistent storage systems

EEEEEEHE

oy

x 1
y 2
6

VA

| X3

Y2

X1

o

J

A

Log \

X 1
y 2
6

|xe3

Y2

X1

A

_

J

REPLICATED STATE MACHINES

oYlule

)

Log \

Madhine

z<6
(Consensus Consensus Consknsus State
achine Module achine

~

x 1
y 2
6

|xe3

Y2

X1

A

o

J

Replicated log = replicated state machine
m All servers execute same commands in same order

Consensus module ensures proper log replication

Clients

Servers

System makes progress as long as any majority of servers

up

Failure model: fail-stop (not Byzantine). delaved/lost msegs

PAX0S PROTOCOL

e Leslie Lamport, 1989
e Nearly synonymous with
consensus

“The dirty little secret of the NSDI community is
that at most five people really, truly understand
every part of Paxos ;-).”

—NSDI reviewer

“There are significant gaps between the
description of the Paxos algorithm and the
needs of a real-world system...the final system

will be based on an unproven protocol.”
—Chubby authors

RAFT'S DESIGN FOR UNDERSTANDABILITY

We wanted an algorithm optimized for building real systems

e Must be correct, complete, and perform well
e Must also be understandable

“What would be easier to understand or explain?”

e Fundamentally different decomposition than Paxos
e Less complexity in state space
e Less mechanism

RAFT OVERVIEW

1. Leader election
e Select one of the servers to act as cluster leader
e Detect crashes, choose new leader
2. Logreplication (normal operation)
e |Leader takes commands from clients, appends to its log
e Leader replicates its log to other servers (overwriting
inconsistencies)
3. Safety
e Only aserver with an up-to-date log can become leader

RAFTSCOPE VISUALIZATION

CORE RAFT REVIEW

1. Leader election

e Heartbeats and timeouts to detect crashes

e Randomized timeouts to avoid split votes

e Majority voting to guarantee at most one leader per term
2. Logreplication (normal operation)

e | eader takes commands from clients, appends to its log

e Leader replicates its log to other servers (overwriting

inconsistencies)

e Built-in consistency check simplifies how logs may differ
3. Safety

e Only elect leaders with all committed entries in their logs

e New leader defers committing entries from prior terms

CONCLUSION

e Consensus widely regarded as difficult
e Raft designed for understandability
= Easier to teach in classrooms
m Better foundation for building practical systems
e Pieces needed for a practical system:
= Cluster membership changes {s'mplerin dissertation
= LOg COmpaCtiOn (expanded tech report/dissertation)
» Clientinteraction
= Evaluation

(dissertation: understandability, correctness, leader election & replication performance)

expanded tech report/dissertation)

QUESTIONS

raftconsensus.github.io

raft-dev mailing list

https://groups.google.com/forum/#!forum/raft-dev
https://raftconsensus.github.io/

