
The Raft Consensus Algorithm and
Implementing Raft in C++

Diego Ongaro, August 2015

Replicated State Machines
Typical architecture for consensus systems

x←3 y←2 x←1 z←6
Log

Consensus
Module

State
Machine

Log

Consensus
Module

State
Machine

Log

Consensus
Module

State
Machine

Servers

Clients

x 1

y 2

z 6

x←3 y←2 x←1 z←6

x 1

y 2

z 6

x←3 y←2 x←1 z←6

x 1

y 2

z 6

z←6

Replicated log ⇒ replicated state machine
All servers execute same commands in same order

Consensus module ensures proper log replication

Raft
Algorithm for implementing a replicated log
System makes progress as long as any majority of servers up
Failure model: fail-stop (not Byzantine), delayed/lost msgs
Designed for understandability

Raft Overview
1. Leader election

Select one of the servers to act as cluster leader
Detect crashes, choose new leader

2. Log replication (normal operation)
Leader takes commands from clients, appends to its log
Leader replicates its log to other servers (overwriting inconsistencies)

3. Safety
Only a server with an up-to-date log can become leader

RaftScope Visualization
just leader election today

https://raft.github.io/raftscope-replay/

Leader Election Review
Heartbeats and timeouts to detect crashes
Randomized timeouts to avoid split votes
Majority voting to guarantee at most one leader per term

CCabin
LLog

github.com/logcabin

LogCabin
Started as research platform for Raft at Stanford
Developed into production system at Scale Computing
Network service running Raft replicated state machine
Data model: hierarchical key-value store
Written in (Rust was pre-0.1)gcc 4.4's C++0x

https://github.com/logcabin/logcabin/
https://gcc.gnu.org/projects/cxx0x.html

C++ Wins
Fast
Easy to predict speed of language features
No GC pauses

Raft election timeouts can be very low
As low-level as you want

LogCabin forks a child process to write a consistent snapshot of its state machine
Resource leaks are rarely an issue

Move semantics, in C++11
LogCabin has 47 calls to new, only 6 calls to delete

All this is also true of Rust

std::unique_ptr

http://en.cppreference.com/w/cpp/memory/unique_ptr

Libraries in C++
LogCabin is nearly* self-contained *protobuf and gtest libraries are great

Contains event loop (epoll), RPC system
Easier to debug, understand system end-to-end
Learned a lot

Hard to depend on libraries
No standard packaging system
Libraries use different subsets of C++

Exceptions? Lambdas? shared_ptr?
Thread safety described in documentation (lol)

Hard to extract LogCabin's Raft implementation as a library
Rust: Cargo packaging, crates.io, rich type system

Thread Safety Is Hard
LogCabin uses style

One mutex per object
All public methods hold the mutex the entire time (except when blocked on a
condition variable)

No language support, not compiler-enforced

Monitor

Equivalent Rust code: exiting wouldn't be in scope

// occasionally hangs forever on shutdown
void threadMain() {
 while (!exiting) {
 std::unique_lock lockGuard(mutex);
 // ... do stuff ...
 condition.wait(lockGuard);
 }
}

http://www.cs.berkeley.edu/~brewer/cs262/Mesa.pdf

Conclusion
Raft: designed for understandability

Randomized leader election approach
Videos of log replication and safety on
Paper/dissertation also include:

Cluster membership changes (simpler in dissertation)

Log compaction
Client interaction
Understandability, correctness, performance evaluation

In implementation, C++
Offers good and predictable performance
Is missing a healthy library ecosystem
Allows memory and thread safety bugs

Excited to see Rust and grow

Raft website

LogCabin

raft-rs

https://github.com/logcabin/logcabin/
https://github.com/Hoverbear/raft
https://raft.github.io/

Questions
raft.github.io

 mailing listraft-dev

https://groups.google.com/forum/#!forum/raft-dev
https://raft.github.io/

Backup Slides

Motivation
Goal: shared key-value store (state machine)
Host it on a single machine attached to network

Pros: easy, consistent
Cons: prone to failure

With Raft, keep consistency yet deal with failures

What is consensus
Agreement on shared state (single system image)
Recovers from server failures autonomously

Minority of servers fail: no problem
Majority fail: lose availability, retain consistency

Servers

Key to building consistent storage systems

How Is Consensus Used?
Top-level system configuration

repl. state machine

S1 S2

S3

N N N N...

repl. state machine

leader standby standby

S1 S2

S3

N N N N...

Replicate entire database state

Paxos Protocol
Leslie Lamport, 1989
Nearly synonymous with consensus

“The dirty little secret of the NSDI community is that at most five
people really, truly understand every part of Paxos ;-).”

—NSDI reviewer

“There are significant gaps between the description of the Paxos
algorithm and the needs of a real-world system...the final system

will be based on an unproven protocol.”
—Chubby authors

Raft's Design for Understandability
We wanted an algorithm optimized for building real systems

Must be correct, complete, and perform well
Must also be understandable

“What would be easier to understand or explain?”

Fundamentally different decomposition than Paxos
Less complexity in state space
Less mechanism

Safe Shutdown Is Hard
Globals class constructs and destroys all major objects in correct order

(Config file, event loop, signal handlers, storage, Raft, state machine, RPC handlers)
Still hard to get object lifetimes correct

RPCs, background threads
Rust: compiler checks lifetimes, no dangling pointers

Raft User Study

0

10

20

30

40

50

60

0 10 20 30 40 50 60

R
af

t g
ra

de

Paxos grade

Raft then Paxos
Paxos then Raft

0

5

10

15

20

implement explain

nu
m

be
r o

f p
ar

tic
ip

an
ts

Paxos much easier
Paxos somewhat easier
Roughly equal
Raft somewhat easier
Raft much easier

Core Raft Review
1. Leader election

Heartbeats and timeouts to detect crashes
Randomized timeouts to avoid split votes
Majority voting to guarantee at most one leader per term

2. Log replication (normal operation)
Leader takes commands from clients, appends to its log
Leader replicates its log to other servers (overwriting inconsistencies)
Built-in consistency check simplifies how logs may differ

3. Safety
Only elect leaders with all committed entries in their logs
New leader defers committing entries from prior terms

Randomized Timeouts
How much randomization is needed to avoid split votes?

0%

20%

40%

60%

80%

100%

100 1000 10000 100000

cu
m
ul
at
iv
e
pe
rc
en
t

time without leader (ms)

150­150ms
150­151ms
150­155ms
150­175ms
150­200ms
150­300ms

Conservatively, use random range ~10x network latency

Raft Implementations
Name Primary Authors Language License

Blake Mizerany, Xiang Li and Yicheng Qin (CoreOS) Go Apache 2.0
(Sky) and (CMU, CoreOS) Go MIT
 (hashicorp) Go MPL-2.0

Java Apache2
 (Stanford, Scale Computing) C++ ISC

Scala Apache2
Javascript MPL-2.0

 (Basho) Erlang Apache2
Moiz Raja, Kamal Rameshan, Robert Varga (Cisco), Tom Pantelis (Brocade) Java Eclipse

Javascript MIT
Javascript ISC
Scala Apache2
C BSD

Copied from Raft website, probably stale.

etcd/raft
go-raft Ben Johnson Xiang Li
hashicorp/raft Armon Dadgar
copycat Jordan Halterman
LogCabin Diego Ongaro
akka-raft Konrad Malawski
kanaka/raft.js Joel Martin
rafter Andrew Stone
OpenDaylight
liferaft Arnout Kazemier
skiff Pedro Teixeira
ckite Pablo Medina
willemt/raft Willem-Hendrik Thiart

https://twitter.com/pablosmedina
https://twitter.com/ktosopl
https://twitter.com/benbjohnson
https://twitter.com/J_Halterman
https://twitter.com/3rdEden
https://github.com/kuujo/copycat
https://github.com/goraft/raft
https://github.com/unshiftio/liferaft
https://github.com/hashicorp/raft
https://github.com/pablosmedina/ckite
https://github.com/kanaka/raft.js
https://github.com/andrewjstone/rafter
https://github.com/willemt/raft
https://github.com/coreos/etcd
https://twitter.com/armon
https://github.com/pgte/skiff-algorithm
https://github.com/opendaylight/controller
https://twitter.com/bus_kanaka
https://github.com/ktoso/akka-raft
https://twitter.com/ongardie
https://twitter.com/andrew_j_stone
https://twitter.com/xiangli0227
https://twitter.com/willemht
https://github.com/logcabin/logcabin
https://twitter.com/pgte

